Inter-kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent Pathway
نویسندگان
چکیده
Small molecule signaling promotes the communication between bacteria as well as between bacteria and eukaryotes. The opportunistic pathogenic bacterium Legionella pneumophila employs LAI-1 (3-hydroxypentadecane-4-one) for bacterial cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, which regulates a variety of processes including natural competence for DNA uptake and pathogen-host cell interactions. In this study, we analyze the role of LAI-1 in inter-kingdom signaling. L. pneumophila lacking the autoinducer synthase LqsA no longer impeded the migration of infected cells, and the defect was complemented by plasmid-borne lqsA. Synthetic LAI-1 dose-dependently inhibited cell migration, without affecting bacterial uptake or cytotoxicity. The forward migration index but not the velocity of LAI-1-treated cells was reduced, and the cell cytoskeleton appeared destabilized. LAI-1-dependent inhibition of cell migration involved the scaffold protein IQGAP1, the small GTPase Cdc42 as well as the Cdc42-specific guanine nucleotide exchange factor ARHGEF9, but not other modulators of Cdc42, or RhoA, Rac1 or Ran GTPase. Upon treatment with LAI-1, Cdc42 was inactivated and IQGAP1 redistributed to the cell cortex regardless of whether Cdc42 was present or not. Furthermore, LAI-1 reversed the inhibition of cell migration by L. pneumophila, suggesting that the compound and the bacteria antagonistically target host signaling pathway(s). Collectively, the results indicate that the L. pneumophila quorum sensing compound LAI-1 modulates migration of eukaryotic cells through a signaling pathway involving IQGAP1, Cdc42 and ARHGEF9.
منابع مشابه
Intra-Species and Inter-Kingdom Signaling of Legionella pneumophila
The ubiquitous Gram-negative bacterium Legionella pneumophila parasitizes environ mental amoebae and, upon inhalation, replicates in alveolar macrophages, thus causing a life-threatening pneumonia called "Legionnaires' disease." The opportunistic pathogen employs a bi-phasic life cycle, alternating between a replicative, non-virulent phase and a stationary, transmissive/virulent phase. L. pneum...
متن کاملThe Pseudomonas aeruginosa N-Acylhomoserine Lactone Quorum Sensing Molecules Target IQGAP1 and Modulate Epithelial Cell Migration
Quorum sensing (QS) signaling allows bacteria to control gene expression once a critical population density is achieved. The Gram-negative human pathogen Pseudomonas aeruginosa uses N-acylhomoserine lactones (AHL) as QS signals, which coordinate the production of virulence factors and biofilms. These bacterial signals can also modulate human cell behavior. Little is known about the mechanisms o...
متن کاملThe Legionella Autoinducer Synthase LqsA Produces an -Hydroxyketone Signaling Molecule*
The opportunistic pathogen Legionella pneumophila replicates in human lung macrophages and in free-living amoebae. To accommodate the transfer between host cells, L. pneumophila switches from a replicative to a transmissive phase. L. pneumophila harbors a gene cluster homologous to the Vibrio cholerae cqsAS quorum sensing system, encoding a putative autoinducer synthase (lqsA) and a sensor kina...
متن کاملHyaluronan-CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression.
In this study, we have examined the interaction of hyaluronan (HA)-CD44 with IQGAP1 (one of the binding partners for the Rho GTPase Cdc42) in SK-OV-3.ipl human ovarian tumor cells. Immunological and biochemical analyses indicated that IQGAP1 (molecular mass of approximately 190 kDa) is expressed in SK-OV-3.ipl cells and that IQGAP1 interacts directly with Cdc42 in a GTP-dependent manner. Both I...
متن کاملα-Hydroxyketone Synthesis and Sensing by Legionella and Vibrio
Bacteria synthesize and sense low molecular weight signaling molecules, termed autoinducers, to measure their population density and community complexity. One class of autoinducers, the α-hydroxyketones (AHKs), is produced and detected by the water-borne opportunistic pathogens Legionella pneumophila and Vibrio cholerae, which cause Legionnaires' disease and cholera, respectively. The "Legionel...
متن کامل